

 # Five Year Plan Revenue Analysis

[![github](https://img.shields.io/badge/Github-Launch-blue)](https://github.com/PhiladelphiaController/five-year-plan-analysis)

Welcome to the documentation for the City Controller’s revenue analysis for the
Five Year Plan!

The documentation outlines the steps involved in running the analysis to
produce revenue projections for the City of Philadelphia’s major tax revenues.
These revenue projections are required as part of the Controller’s Office
review of the City’s annual Five Year Plan.

The analysis code is written in Python and [is available on
Github](https://github.com/PhiladelphiaController/five-year-plan-analysis). It
produces projections for the following tax revenues:

	Wage & Earnings (Current Year Only)

	Business Income & Receipts (BIRT)

	Sales

	Realty Transfer

	Parking

	Amusement

	Net Profits (Current Year Only)

	Beverage

The analysis relies on quarterly revenue data since 1996 and uses either
[vector auto regression](https://en.wikipedia.org/wiki/Vector_autoregression)
via the [statsmodels package](https://www.statsmodels.org/stable/index.html)
or auto-regression via the [prophet package](https://facebook.github.io/prophet/) to make time-series projections.
In both cases, the regression forecasts incorporate the [CBO’s latest 10-year
forecast](https://www.cbo.gov/data/budget-economic-data) as exogeneous
variables.

Get Started

	If this is your first time using the code, following the [installation
instructions](./install).

	If you’d like to dive into using the code, check out the
[usage section](./usage/overview).

	To learn more about the different steps involved in the analysis, check out the
[code structure docs](./structure/overview).

Index

 # Installation

Install the prerequisites

You will need Python (version >= 3.9) and poetry (version >= 1.2) installed
on your computer. To install Python, it is recommended to use the pyenv tool.
Installation instructions are available [on
Github](https://github.com/pyenv/pyenv#installation).

The poetry tool handles dependency management and installation. Installation
instructions are available on [their
documentation](https://python-poetry.org/docs/#installation).

If you already have poetry installed, you can check the version by running
the following from the command line:

`bash
poetry --version
`

If the version is less than 1.2, you can update it by following the
[instructions](https://python-poetry.org/docs/#installation) on their
documentation.

Install the source code

First, clone the [Github
repository](https://github.com/PhilaController/five-year-plan-analysis):

`bash
git clone https://github.com/PhilaController/five-year-plan-analysis.git
`
and change to the new folder:

`bash
cd five-year-plan-analysis
`

Then use poetry to install the dependencies:

`bash
poetry install
`

This will create a new Python environment where all of the code’s dependencies
are installed. If this finishes successfully,

`bash
poetry run fyp-analysis-run --help
`

This should output the help message for the main analysis command.

!!! note

The command name (fyp-analysis-run) must be prefixed with poetry run.
This ensures that poetry will run the command from within the installed
environment, so that the necessary dependencies are available when the code runs.

Set up your API credentials

To download economic indicator data, you will need credentials to connect to
the API services of various sources. These credentials are stored on the FPD
Sharepoint site in the following file:

Documents/Five Year Plan/Analysis/Indicator API Credentials.docx

Create a local file in the conf/local/ folder called credentials.yml and
copy the contents of the sharepoint file into this file. This will allow the
data processing pipeline to automatically download the necessary economic
indicators.

Getting the latest code changes

You can pull in the latest changes from Github using the git command:

`bash
git pull origin main
`

If you have any local changes, this command could raise merge conflicts that
you will have to resolve manually. You check for local changes via:

`
git status
`

If you want to save your local changes, but get a clean git status, you can
“stash” them:

`
git stash
`

If you “stash” your changes before running git pull origin main you will
avoid any merge conflicts when syncing the code.

 # Overview

The analysis code is subdivided into four steps:

	Data Processing: a pipeline that prepares the relevant data indicators
to be input into the modeling regressions.

1. Forecast Preparation: a pipeline that prepares for the forecasting step by trying to estimate the best features to use for each tax.
1. Exploratory modeling: an exploratory step that runs a grid search to find the best features for each tax.
1. Forecasting: a pipeline that runs the regressions for each tax and produces

the final forecasts.

You can think of a pipeline as a series of functions where the inputs to one
function depend on the outputs from a previous function.

The third step above is an interactive step performed using the Jupyter notebooks in
the notebooks/ folder. There is a notebook file for each tax. These notebooks
are used to identify the best fitting parameters for each tax, e.g., which
endogenous and exogenous variables should be used in the vector
auto-regressions. Once these best-fit parameters are found, they can be fed
into the modeling pipeline.

To manage the pipelines and the data inputs/outputs, the project uses the
[kedro](https://github.com/quantumblacklabs/kedro) package. From the kedro
documentation:

> Kedro is an open-source Python framework for creating reproducible,
> maintainable and modular data science code. It borrows concepts from software
> engineering best-practice and applies them to machine-learning code; applied
> concepts include modularity, separation of concerns and versioning.

Kedro is useful for our purposes because it enables reproducible revenue
projections, manages the data inputs and outputs, and tracks any changes in the
data and results over time.

There are a few key concepts from kedro that are necessary to understand how
this project works. This section provides a brief introduction to this
concepts. To fully understand kedro, it is worth going through the
[spaceflights
tutorial](https://kedro.readthedocs.io/en/stable/03_tutorial/01_spaceflights_tutorial.html)
on the kedro documentation. The full documentation is available
[here](https://kedro.readthedocs.io/en/stable/index.html).

The Data Catalog

This section introduces catalog.yml. The file is located in conf/base and
is a registry of all data sources available for use by the project. It manages
loading and saving of data.

The Data Catalog provides instructions for how to load and save the various
data inputs and outputs used by the analysis pipelines. The Data Catalog for
this project is available
[here](https://github.com/PhiladelphiaController/five-year-plan-analysis/blob/main/conf/base/catalog.yml).

The Data Catalog is composed of a series of named entries. Giving official
“names” to the data frames the analysis uses is helpful because then we can
refer to those data frames in our pipeline code. Because the Data Catalog
provides the saving/loading instructions, functions in our pipeline code will
automatically “know” about the data and how to load it. For example:

```yaml
economic_indicators:


type: pandas.CSVDataSet
filepath: data/02_intermediate/economic_indicators_all.csv
save_args:


index: True





	load_args:
	index_col: 0
parse_dates: True








```

We’ve created a named dataset called “economic_indicators” and specified that
it should be saved as a CSV file to the location
data/02_intermediate/economic_indicators_all.csv (more info on the data/ folder [here](../data/overview)). The other
arguments are passed to the read_csv() and DataFrame.to_csv() functions
from pandas.

!!! note

For more information, see the
[Kedro documentation](https://kedro.readthedocs.io/en/stable/05_data/01_data_catalog.html) on the Data Catalog.

Configuration

The analysis depends on a set of input parameters that we can define in a
configuration file. These files are located in the conf/base/ folder of the
repository. There are four relevant parameters files:

	[conf/base/parameters.yml](https://github.com/PhiladelphiaController/five-year-plan-analysis/blob/main/conf/base/parameters.yml):
This holds general parameters about the analysis, such as the start year for
the plan being analyzed.

	[conf/base/parameters/data_processing.yml](https://github.com/PhiladelphiaController/five-year-plan-analysis/blob/main/conf/base/parameters/data_processing.yml):
This holds parameters specific to the data processing pipeline.

	[conf/base/parameters/forecast_prep.yml](https://github.com/PhiladelphiaController/five-year-plan-analysis/blob/main/conf/base/parameters/forecast_prep.yml):
This holds parameters specific to the forecast prep pipeline.

	[conf/base/parameters/forecast.yml](https://github.com/PhiladelphiaController/five-year-plan-analysis/blob/main/conf/base/parameters/forecast.yml):
This holds parameters specific to the forecasting pipeline.

When running a pipeline or working in one of the Jupyter notebooks, the
parameters will automatically be loaded by kedro and available as variables.
Magic!

	!!! note
	For more information, see the [Kedro documentation](https://kedro.readthedocs.io/en/stable/04_kedro_project_setup/02_configuration.html#use-parameters) on configuration parameters.

Nodes

From the kedro documentation:

> Nodes are the building blocks of pipelines and represent tasks. Pipelines are
> used to combine nodes to build workflows, which range from simple machine
> learning workflows to end-to-end production workflows.

Nodes are just Python functions that can be put together in sequential order to
form a pipeline. Nodes are useful because we can specify any named dataset from
the Data Catalog or configuration parameter as either the input or output of
the function.

For example, the first step of the data processing pipeline uses the following
node:

```python
node(


func=get_economic_indicators,
inputs=”params:fresh_indicators”,
outputs=”economic_indicators”,
name=”economic_indicators_node”,





)

This function outputs the economic_indicators data frame that we defined
earlier in the Data Catalog. When running the pipeline, kedro will
automatically save the data frame as a CSV to file location we specified in the
data catalog. This node will call the function get_economic_indicators().

Note the syntax params:fresh_indicators — this is how you are able to
reference configuration parameters, by prefixing the name of the variable with
the “params:” tag. In this case, the function takes an input argument that
determines whether the function should download a fresh copy of the indicators
or not.

This is the second node in the data processing pipeline:

```python
node(

func=get_quarterly_averages,
inputs=”economic_indicators”,
outputs=”quarterly_features_raw”,
name=”quarterly_features_raw_node”,

)

This node will call the function
get_quarterly_averages(), which will take the quarterly average of the economic indicators. It takes the
raw economic_indicators data frame as input and outputs a
quarterly_features_raw dataset (that is also defined in the Data Catalog).

	!!! note
	For more information, see the
[Kedro documentation](https://kedro.readthedocs.io/en/stable/06_nodes_and_pipelines/01_nodes.html)
on Nodes.

Pipelines

From the kedro documentation:

> A pipeline organises the dependencies and execution order of your collection
> of nodes, and connects inputs and outputs while keeping your code modular.
> The pipeline determines the node execution order by resolving dependencies
> and does not necessarily run the nodes in the order in which they are passed
> in.

There are three pipelines in this project for data processing, forecast prep, and forecasting.
These are modular and completely separate from each other. The outputs of the
data processing pipeline are used as inputs to the forecast prep pipeline and then
the forecast pipeline.

In the repository, the source code for these pipelines are broken out
separately in to different folders (see
[here](https://github.com/PhiladelphiaController/five-year-plan-analysis/tree/main/src/fyp_analysis/pipelines)).

More information is provided for each of these pipelines: [data processing](./steps/1-processing.md),
[forecast prep](./steps/2-forecast-prep.md), and [forecasting](./steps/4-forecast.md).
sections of the documentation.

	!!! note
	For more information, see the [Kedro documentation](https://kedro.readthedocs.io/en/stable/06_nodes_and_pipelines/02_pipeline_introduction.html) on Pipelines.

Next Steps

The following sections of the documentation provide more detail on the
analysis:

	[The data/ folder](./data/overview.md): Everything you need to know about the data
inputs and outputs in the analysis

	Steps:
- [1. Data Processing](./steps/1-processing.md): The data processing pipeline
- [2. Forecast Prep](./steps/2-forecast-prep.md): The forecast prep pipeline
- [3. Exploratory Modeling](./steps/3-exploratory.md): The exploratory modeling step
- [4. Forecasting](./steps/4-forecast.md): The forecasting pipeline

 # The data/ Folder

The data/ folder holds the various data inputs and outputs from the analysis
pipelines. There is a specific folder to hold the raw input data (e.g.,
historical tax revenues and economic indicators), as well as folders to hold
intermediate data products and modeling results.

Data Layers

The data/ folder follows the data engineering syntax used by the kedro
package, which specifies a way of organizing data into layers. The data layers
are:

Note: We are not using the “primary” data layer in this analysis.

There are three folders associated with the data processing pipeline:

	01_raw: The raw data files that serve as the starting point for the
analysis. This is the ground truth data that should not be modified by the
analysis in any way.

	02_intermediate: Intermediate data products produced by the data processing
pipeline.

	03_feature: The final unscaled and scaled versions of the features that
will be input into the modeling pipeline.

There are four folders associated with the modeling pipeline:

	04_model_input: Data, other than the features, that is input into the
modeling pipeline.

	05_models: Regression models.

	06_model_output: Files output by the regression models.

	07_reporting: Files for reporting final results.

Raw Data

There are four folders in the [01_raw folder](https://github.com/PhilaController/five-year-plan-analysis/tree/main/data/01_raw):

	cbo: CBO 10-year economic projection spreadsheets

	historical: Historical tax rates and revenue data

	indicators: The economic indicator data

	plans: The data from the Five Year Plan, e.g., projected revenues and rates
over the Plan; this comes in two flavors: the “proposed” and the “adopted”
versions

Historical Data Files

The data/01_raw/historical/ folder contains the historical data necessary for
the analysis. In particular, there is historical tax revenue data, tax rate
data, and data related to the breakdown of the net income and gross receipt
portions of BIRT.

Revenues

In the data/01_raw/historical/revenues/ folder
([link](https://github.com/PhiladelphiaController/five-year-plan-analysis/tree/main/data/01_raw/historical/revenues)),
there are spreadsheets holding the annual and quarterly tax revenue data:

	[Annual.xlsx](https://github.com/PhiladelphiaController/five-year-plan-analysis/blob/main/data/01_raw/historical/revenues/Annual.xlsx)

	[Quarterly.xlsx](https://github.com/PhiladelphiaController/five-year-plan-analysis/blob/main/data/01_raw/historical/revenues/Quarterly.xlsx)

The quarterly data file is the main input data file required for the analysis.
The annual file is not required for the analysis but useful for tracking the
audited annual totals for each tax. Each year, these data files need to be
updated with the latest historical data. See the [update
usage instructions](../../../usage/updates) for more information.

!!! warning

The data for Wage & Earnings Tax and the Net Profits Tax are for the current year
only (excludes prior year totals). This will be important when updating
the historical data files.

Rates

The data/01_raw/historical/rates/ folder
([link](https://github.com/PhiladelphiaController/five-year-plan-analysis/tree/main/data/01_raw/historical/rates))
contains a CSV file for each tax that contains the historical tax rate for each
fiscal year.

This does not contain any projected rates, only historical. Each year the rate
for the latest fiscal year should be added to each of the files.

BIRT Splits

The analysis requires the historical breakdown between the net income and gross
receipts portion of BIRT. The information for the latest fiscal year can be
obtained by the BIRT revenue model sent over by the Budget Office each year.

Indicators

The raw economic indicators are stored in the data/01_raw/indicators/ folder
([link](https://github.com/PhiladelphiaController/five-year-plan-analysis/tree/main/data/01_raw/indicators)).
Other than the historical tax revenue data, this is the main source of input
data for the analysis.

CBO

The 10-year economic projections [from the
CBO](https://www.cbo.gov/data/budget-economic-data#4) are stored in this
folder. The CBO data variables are used as exogenous variables in the
regression modeling.

Plans

The data/01_raw/plans/ folder
([link](https://github.com/PhiladelphiaController/five-year-plan-analysis/tree/main/data/01_raw/plans))
holds the Five Year Plan projection information for revenues and rates. There
should be separate files for the proposed and adopted versions of the Plan.

	!!! note
	For more information on these files, see the [Plan Details
section](../plan_details).

 # The Plan Details

Details about the five-year projected tax revenues and rates are stored
in YAML files in the data/01_raw/plans/ folder ([link](https://github.com/PhiladelphiaController/five-year-plan-analysis/tree/main/data/01_raw/plans)).
For a given plan, there should be a separate file for the proposed
and adopted versions of the Plan.

There is a specific schema that must be used. See an example YAML file [here](https://github.com/PhiladelphiaController/five-year-plan-analysis/blob/main/data/01_raw/plans/FY22-FY26-Proposed.yml). This file looks like this:

```yaml
kind: Proposed
fiscal_years: [2022, 2023, 2024, 2025, 2026]
revenues:


Amusement: [12963000, 19657000, 20414000, 21231000, 22063000]
BIRT: [515503000, 529269000, 545311000, 557186000, 563243000]
NPT: [25454000, 27282000, 29097000, 31036000, 33265000]
Parking: [56429000, 73662000, 76837000, 79949000, 83107000]
RTT: [294859000, 295832000, 304884000, 315281000, 326095000]
Sales: [336886195, 346319008, 358682597, 372204931, 385678749]
Wage: [1544731000, 1616891000, 1685156000, 1761687000, 1837646000]





	rates:
	Amusement: [5.0, 5.0, 5.0, 5.0, 5.0]
BIRT:


gross_receipts: [0.1415, 0.1415, 0.1415, 0.1415, 0.1415]
net_income: [6.10, 6.00, 5.75, 5.50, 5.25]





	NPT:
	resident: [3.8398, 3.8360, 3.8322, 3.8283, 3.8245]
nonresident: [3.4201, 3.4167, 3.4133, 3.4099, 3.4065]





Parking: [22.5, 22.5, 22.5, 22.5, 22.5]
RTT: [3.278, 3.278, 3.278, 3.278, 3.278]
Sales: [2.0, 2.0, 2.0, 2.0, 2.0]
Wage:


resident: [3.8398, 3.8360, 3.8322, 3.8283, 3.8245]
nonresident: [3.4201, 3.4167, 3.4133, 3.4099, 3.4065]






	resident_fractions:
	Wage: 62.4
NPT: 47.2





net_income_fraction: [72.7, 72.3, 71.5, 70.6, 69.6]
```


	!!! warning
	If the data in the YAML file does not match the schema, an error will be raised when the analysis runs.

Schema

	kind: Either ‘Proposed’ or ‘Adopted’

	fiscal_years: The fiscal years in the Plan (should be a list of length 5)

	
	revenues: The 5-year projected revenues for each tax:
	
	Amusement

	BIRT

	NPT

	Parking

	RTT

	Sales

	Wage

	
	rates: The 5-year projected tax rates for each tax
	
	For Wage and NPT, you must specify the resident and nonresident rates

	For BIRT, you must specify the net_income and gross_receipts rates

	resident_fractions: The fraction of the tax base from residents for the

Wage and Net Profits taxes
- net_income_fraction: The fraction of the total BIRT revenues that
come from the net income portion

	!!! note
	For more information about how to create this file for a specific Plan year,
see the section on [updating data sources](../../usage/updates.md).

 # 1. The Data Processing Pipeline

The analysis code begins with the data processing pipeline. This pipeline
starts by downloading the latest economic indicators and ends by outputting a
set of features that can be input into the VAR modeling pipeline.

Its main purpose is to identify the series of transformations that will make
each time series indicator stationary so that the indicators are suitable for
use in a vector autoregression.

The code for the pipeline is available at:

src/fyp_analysis/pipelines/data_processing/
([link](https://github.com/PhilaController/five-year-plan-analysis/tree/main/src/fyp_analysis/pipelines/data_processing))

Running the Pipeline

To run the pipeline, execute:

`
poetry run fyp-analysis-run --pipeline dp
`

where dp is short for “data processing”.

Parameters

The parameters for the data processing pipeline can be set in the file:
conf/base/parameters/data_processing.yml
([link](https://github.com/PhilaController/five-year-plan-analysis/blob/main/conf/base/parameters/data_processing.yml)).
The parameters are:

	fresh_indicators: whether to download fresh economic indicators

	seasonal_adjustments: the names of the columns to apply seasonal
adjustments to

	min_feature_year: the minimum year to trim the indicators to

Steps

This section outlines the steps (also called nodes) in the data processing
pipeline. The steps are defined in the
[src/fyp_analysis/pipelines/data_processing/pipeline.py
file](https://github.com/PhiladelphiaController/five-year-plan-analysis/blob/main/src/fyp_analysis/pipelines/data_processing/pipeline.py#L15).
In this file, we define the function to run for each step, as well as the
inputs and outputs of each function.

This pipeline will download the latest version of a set of economic indicators,
perform various transformations, and output a set of features suitable to be
used as input to the [modeling pipeline](../../modeling/overview).

	!!! warning
	Make sure you have properly set up your local API credentials before running
this pipeline. Otherwise, you won’t be able to download all of the necessary indicators.
See the [setup instructions](../../../install/#set-up-your-api-credentials) for more information.

In python, the pipeline is defined as follows:

```python
def create_pipeline(**kwargs):



	return Pipeline(
	
	[
	
	node(
	func=get_economic_indicators,
inputs=”params:fresh_indicators”,
outputs=”economic_indicators”,
name=”economic_indicators_node”,





),
node(


func=get_quarterly_averages,
inputs=”economic_indicators”,
outputs=”quarterly_features_raw”,
name=”quarterly_features_raw_node”,




),
node(


func=impute_cbo_values,
inputs=[


“quarterly_features_raw”,
“params:plan_start_year”,
“params:cbo_forecast_date”,




],
outputs=”quarterly_features_cbo_imputed”,
name=”impute_cbo_node”,




),
node(


func=combine_features_and_bases,
inputs=[“quarterly_features_cbo_imputed”, “plan_details”],
outputs=”features_and_bases”,
name=”combine_features_bases_node”,




),
node(


func=seasonally_adjust_features,
inputs=[“features_and_bases”, “params:seasonal_adjustments”],
outputs=”features_and_bases_sa”,
name=”seasonal_adjustment_node”,




),
node(


func=get_stationary_guide,
inputs=”features_and_bases_sa”,
outputs=”stationary_guide”,
name=”stationary_guide_node”,




),
node(


func=get_final_unscaled_features,
inputs=[“features_and_bases_sa”, “params:min_feature_year”],
outputs=”final_unscaled_features”,
name=”final_unscaled_features_node”,




),
node(


func=get_final_scaled_features,
inputs=[


“final_unscaled_features”,
“stationary_guide”,




],
outputs=”final_scaled_features”,
name=”final_scaled_features_node”,




),





]





)




```

!!! note “Reminder”

As described [here](../../../usage/interactive), if you are
working with IPython or in a Jupyter notebook, you can load any named
dataset (the inputs/outputs above) using the catalog.load() function.
For example, to load the “economic_indicators” dataset (the output from step 1), use:

` python
indicators = catalog.load("economic_indicators")
`

Step 1: Download indicators

	Function: get_economic_indicators()

	Purpose: Download the latest set of economic indicators and save them
locally

	
	Inputs:
	
	Parameter: fresh_indicators

	
	Outputs:
	
	Dataset: economic_indicators in the data/02_intermediate/ folder

Economic indicators are defined in the
[src/fyp_analysis/pipelines/data_processing/indicators/sources](https://github.com/PhilaController/five-year-plan-analysis/tree/main/src/fyp_analysis/pipelines/data_processing/indicators/sources)
folder. Right now, there are various sources, including FRED, Quandl, CARTO
(Philadelphia open data), and Zillow, with a JSON file for each source that
lists the information necessary for download. New indicators can be added by
adding a new entry to the appropriate JSON file.

The current set of indicators includes the following:

{{ read_csv(‘docs/assets/data/indicators.csv’) }}

Step 2: Impute CBO values

	Function: impute_cbo_values()

	Purpose: Impute CBO forecast values for Q4 of the current fiscal year.

	
	Inputs:
	
	Dataset: economic_indicators

	
	Outputs:
	
	Dataset: quarterly_features_raw in the data/02_intermediate/ folder

For economic indicators that CBO is projections for, this will impute the
forecast value for Q4 of the current fiscal year, where an actual value is
lacking.

Step 3: Get quarterly averages

	Function: get_quarterly_averages()

	Purpose: Get the quarterly averages of the indicators and remove any
indicators with annual frequency.

	
	Inputs:
	
	Dataset: quarterly_features_raw

	Parameter: plan_start_year

	Parameter: cbo_forecast_date

	
	Outputs:
	
	Dataset: quarterly_features_cbo_imputed in the data/02_intermediate/
folder

Step 4: Combine indicators and tax bases

	Function: combine_features_and_bases()

	Purpose: Combine the economic indicator features and the tax base data
into a single data frame.

	
	Inputs:
	
	Dataset: quarterly_features_cbo_imputed

	Dataset: plan_details

	
	Outputs:
	
	Dataset: features_and_bases in the data/02_intermediate/ folder

Step 5: Seasonally adjust features

	Function: seasonally_adjust_features()

	Purpose: Seasonally adjust the specified columns, using the [LOESS
functionality in
statsmodels](https://www.statsmodels.org/dev/generated/statsmodels.tsa.seasonal.STL.html).

	
	Inputs:
	
	Dataset: features_and_bases

	Parameter: seasonal_adjustments

	
	Outputs:
	
	Dataset: features_and_bases_sa in the data/02_intermediate/ folder

Step 6: Calculate stationary guide

	Function: get_stationary_guide()

	Purpose: Make the stationary guide, a spreadsheet which contains the
instructions for making each feature stationary.

	
	Inputs:
	
	Dataset: features_and_bases_sa

	
	Outputs:
	
	Dataset: stationary_guide in the data/02_intermediate/ folder

For each feature, the stationary guide contains the following information:

	Can we take the log of the variable (e.g., is it non-negative?)?

	How many differences for stationary?

	Should we normalize the data first?

The spreadsheet is available in the data/02_intermediate/ folder
[(link)](https://github.com/PhilaController/five-year-plan-analysis/blob/main/data/02_intermediate/stationary_guide.xlsx).

This step also creates the diagnostic stationary plots for all tax bases and
save them to data / 02_intermediate / stationary_figures. These figures test
the autocorrelation and partial autocorrelation of the time series. For
example, the stationary figure for the Wage Tax is:

![Wage Tax stationary
Figure](https://github.com/PhilaController/five-year-plan-analysis/raw/main/data/02_intermediate/stationary_figures/WageBase.png)

Step 7: Final unscaled features

	Function: get_final_unscaled_features()

	Purpose: Get the final unscaled features to input into the modeling

pipeline. The only additional preprocessing performed in this step is trimming
to the specific minimum year for all features and tax bases.
- Inputs:

	Dataset: features_and_bases_sa

	Parameter: min_feature_year

	
	Outputs:
	
	Dataset: final_unscaled_features in the data/03_feature/ folder

Step 8: Final scaled features

	Function: get_final_scaled_features()

	Purpose: Get the final scaled features to input into the modeling

pipeline. This applies the final preprocessor based on the “stationary guide.”
For each feature, it takes the log of the feature if able (if not, it applies a
normalization). Finally, the preprocessor differences the feature until it is
stationary.
- Inputs:

	Dataset: final_unscaled_features

	
	Outputs:
	
	Dataset: final_scaled_features in the data/03_feature/ folder

 # 2. The Forecast Prep Pipeline

The forecast prep pipeline is the second step in the analysis code and relies
on the final scaled features that are output from the
[data processing pipeline](./1-processing.md). It is responsible for preparing for the
forecasting steps by calculating correlations between features, a Granger
causality matrix, and estimates of the most suitable endogenous features for
each tax base.

The code for the pipeline is available in:

src/fyp_analysis/pipelines/forecast_prep/
([link](https://github.com/PhilaController/five-year-plan-analysis/tree/main/src/fyp_analysis/pipelines/forecast_prep))

General Workflow

The general workflow for the modeling pipeline is:

1. Calculate the correlation matrix between features
1. Calculate the [Granger causality matrix](https://en.wikipedia.org/wiki/Granger_causality) using functionality
from [statsmodels](https://www.statsmodels.org/stable/generated/statsmodels.tsa.stattools.grangercausalitytests.html)
1. For each tax base, use the Granger matrix to determine which features are
suitable to include as endogenous variables in the VAR fit.

Running the Pipeline

To run the forecast prep pipeline, execute:

`
poetry run fyp-analysis-run --pipeline fp
`

where fp is short for “forecast prep”.

Parameters

The parameters for the forecast prep pipeline can be set in the file:
conf/base/parameters/forecast_prep.yml
([link](https://github.com/PhilaController/five-year-plan-analysis/blob/main/conf/base/parameters/forecast_prep.yml)).
The parameters are:

	grangers_maxlag: When testing for Granger causality, check up to this
many lags.

	grangers_max_date: When testing for Granger causality, include data up
until this date.

Steps

This section outlines the steps (also called nodes) in the forecast prep pipeline.
The steps are defined in the
[src/fyp_analysis/pipelines/forecast_prep/pipeline.py file](https://github.com/PhilaController/five-year-plan-analysis/blob/main/src/fyp_analysis/pipelines/forecast_prep/pipeline.py).
In this file, we define the function to run for each node, as well as the
inputs and outputs.

This pipeline will take the scaled features output by the [data processing pipeline](./1-processing.md),
calculate feature correlations and a Granger causality matrix.

In python, the pipeline is defined as follows:

```python
def create_pipeline(**kwargs):



	return Pipeline(
	
	[
	
	node(
	func=get_feature_correlations,
inputs=[“final_scaled_features”, “params:min_feature_year”],
outputs=”scaled_feature_correlations”,
name=”scaled_feature_correlations_node”,





),
node(


func=get_grangers_matrix,
inputs=[


“final_scaled_features”,
“params:grangers_maxlag”,
“params:grangers_max_date”,




],
outputs=”grangers_matrix”,
name=”grangers_matrix_node”,




),
node(


func=get_possible_endog_variables,
inputs=[“final_scaled_features”, “grangers_matrix”],
outputs=”possible_endog_variables”,
name=”endog_variables_node”,




),





]





)




```

!!! note “Reminder”

As described [here](../../usage/interactive.md), if you are
working with IPython or in a Jupyter notebook, you can load any named
dataset (the inputs/outputs above) using the catalog.load() function.
For example, to load the correlations matrix (the output from step 1), use:

` python
correlations = catalog.load("scaled_feature_correlations")
`

Step 1: Calculate correlations

	Function: get_feature_correlations()

	Purpose: Calculate and plot the correlation between scaled features over

time. A correlations figure is saved to the “data / 04_model_input” folder.
- Inputs:

	Dataset: final_scaled_features

	Parameter: min_feature_year

	
	Outputs:
	
	Dataset: scaled_feature_correlations in the data/04_model_input/
folder

The correlations figure looks like this:

![Correlations figure](/assets/img/correlations_min_year_1996.png)

Step 2: Calculate Granger causality

	Function: get_grangers_matrix()

	Purpose: Check [Granger
Causality](https://en.wikipedia.org/wiki/Granger_causality) of all possible
combinations of the time series indicators.

	
	Inputs:
	
	Dataset: final_scaled_features

	Parameter: grangers_maxlag

	Parameter: grangers_max_date

	
	Outputs:
	
	Dataset: grangers_matrix in the data/04_model_input/ folder

Step 3: Get possible endogenous variables

	Function: get_possible_endog_variables()

	Purpose: Get possible endogenous variables for tax base features, based

on Granger causality. Return a dictionary of possible endogenous variables
based on Grangers causality for each tax base feature.
- Inputs:

	Dataset: final_scaled_features

	Dataset: grangers_matrix

	
	Outputs:
	
	Dataset: possible_endog_variables in the data/04_model_input/ folder

 # 3. Exploratory Modeling

The explorating modeling step is the third step in the analysis code and relies
on the outputs from the two previous steps, [the data processing pipeline](./1-processing.md)
and the [forecast prep pipeline](./2-forecast-prep.md).

In this step, the user identifies the bestfit forecasting
parameters for each tax base, e.g. which features to use to forecast each tax base.
The analysis is done in the Jupyter notebooks in the notebooks/ folder.
There is a notebook file for each tax base.

Running this step

This step is performed interactively in Jupyter notebooks. You can launch
the interactive environment by running:

`
poetry run kedro jupyter lab
`

This should launch the Jupyter Lab interface in your browser. Using the file
browser interface, navigate to the notebook folder. If you haven’t already,
create a folder under the “plans” folder for the current analysis and copy over
a .md file for each tax from the “templates” folder to the folder for the
current plan. To launch the .md as an interactive notebook, right click on
the file, and select “Open with > Notebook”. Now you have an interactive notebook
to edit and execute as you like.

Overview

The interactive notebooks for each tax will determine the best
parameters to use in the forecasting process by performing a grid search
on the historical tax data:

1. Use a combination of the Granger matrix, correlation matrix, and intuition to
select a list of possible endogenous variables for each tax base.
1. For each set of parameters, split the historical data into multiple samples, make predictions,
and evaluate the accuracy of the predictions.
1. Select the best-fit parameters by choosing the parameter set that has the best
accuracy on the historical data.

Because we need to test all possible combinations of the parameters and run the VAR
model for each set, the grid search can be computationally expensive (it is often
referred to as a “brute-force” method of finding the best parameters).

In the notebooks/ folder, there are template Jupyter notebook for each tax that performs
these steps. It is useful to perform the grid search interactively so we can
iterate through the parameters, plot the results, and verify that the fits are reasonable.

For each tax, the notebook templates have code to load the necessary variables,
run the grid search, and then once the bestfit parameters have been idenitifed,
the last cell in the notebook will save these parameters to a file. Once you
have done this for all taxes, you can proceed to the final step in the analysis code,
[the forecasting pipeline](./4-forecast.md).

 # 4. The Forecasting Pipeline

The forecast pipeline runs the vector auto-regressions and produces
the final forecasts for each tax revenue. Each of the three previous steps
must be performed before this step.

After identifying the best-fit set of
forecast parameters for each tax in the [exploratory step](./3-exploratory.md),
this pipeline will run the VAR model for each tax with these parameters to
generate the final fits. It outputs a summary file of
the revenue forecasts: data/07_reporting/revenue_summary.xlsx.

The pipeline relies on the statsmodels package to calculate vector
autoregressions (VAR) for each tax base. For more information on statsmodels,
see the [documentation for VARs](https://www.statsmodels.org/dev/vector_ar.html#var-p-processes).

The code for the pipeline is available in:

src/fyp_analysis/pipelines/forecast/ ([link](https://github.com/PhilaController/five-year-plan-analysis/tree/main/src/fyp_analysis/pipelines/forecast))

Running the Pipeline

To run the forecast pipeline, execute:

`
poetry run fyp-analysis-run --pipeline forecast
`

Parameters

The parameters for the data processing pipeline can be set in the
file: conf/base/parameters/forecast.yml ([link](https://github.com/PhilaController/five-year-plan-analysis/blob/main/conf/base/parameters/modeling.yml)). The parameters are:

	max_fit_date: The maximum date to include in the VAR fits.

	forecast_types: For each tax base, what kind of forecast to run, either “var” or “file”. This will depend on what notebook you used in the exploratory phase. If you generated a tax base forecast not from VAR fits in the notebook for a tax, you will want to specify “file” here. See for example, the realty transfer tax forecast notebook.

Steps

This section outlines the steps (also called nodes) in the forecast pipeline.
The steps are defined in the
[src/fyp_analysis/pipelines/forecast/pipeline.py
file](https://github.com/PhilaController/five-year-plan-analysis/blob/main/src/fyp_analysis/pipelines/forecast/pipeline.py).
In this file, we define the function to run for each node, as well as the
inputs and outputs.

This pipeline will calculate a set of forecasts and output a summary of
the results.

In python, the pipeline is defined as follows:

```python
def create_pipeline(**kwargs):



	return Pipeline(
	
	[
	
	node(
	func=run_forecasts,
inputs=[


“final_unscaled_features”,
“stationary_guide”,
“params:plan_start_year”,
“params:plan_type”,
“params:cbo_forecast_date”,
“params:forecast_types”,




],
outputs=[“tax_base_forecasts”, “tax_revenue_forecasts”],
name=”forecasting_node”,





),
node(


func=report_forecast_results,
inputs=[


“params:plan_start_year”,
“tax_revenue_forecasts”,
“tax_base_forecasts”,




],
outputs=None,
name=”reporting_node”,




),





]





)




```

Step 1: Run forecasts

	Function: run_forecasts()

	Purpose: Run the forecasts for each tax base.

	
	Inputs:
	
	Dataset: final_scaled_features

	Dataset: grangers_matrix

	
	Outputs:
	
	Dataset: tax_base_forecasts, saved as 06_model_output/final_tax_bases.csv

	Dataset: tax_revenue_forecasts, saved as 06_model_output/final_tax_revenues.csv

Step 2: Summarize the results

	Function: report_forecast_results()

	Purpose: Create the summary file of the revenue forecasts

	
	Inputs:
	
	Parameter: plan_start_year

	Dataset: tax_base_forecasts

	Dataset: tax_revenue_forecasts

	
	Outputs:
	
	This outputs a summary excel file data/07_reporting/revenue_summary.xlsx

 # Working interactively

When running a pipeline with kedro, the software will automatically
load the Data Catalog and parameters using the YAML files in the conf/
folder and make those available to the functions in the pipeline.
This information is part of the “context” that kedro uses to
run each pipeline.

Rather than simply running the pipelines from the command line, it
will sometimes be easier to work in an interactive environment, either
by using IPython or Jupyter Notebook/Lab. This section describes how to work
interactively with kedro and be able to load datasets from the
Data Catalog and have access to the configuration parameters.

We will use the kedro command to work interactively with the code and
automatically have a few key context variables loaded for us.

To start a new IPython session in the command line, use:

`
kedro ipython
`

You should see the following log messages printed out:

`
INFO - ** Kedro project Five Year Plan Analysis
INFO - Defined global variable `context`, `session` and `catalog`
`

The global catalog variable will hold all of the entries from the catalog.yml file.
We can load a data frame by referencing the desired dataset’s name in the YAML file.
For example, we can load the economic indicators using:

```python
indicators = catalog.load(“economic_indicators”)

indicators.head()
```

And this is the output you’ll see:
```


BuildingPermitsPhilly  ActivityLicensesPhilly  BizLicensesPhilly  …  MeanDaysToSalePhillyMSA  MedianListPricePhillyMSA  RentIndexPhillyMSA




Date                                                                          …
1913-01-01                    NaN                     NaN                NaN  …                      NaN                       NaN                 NaN
1913-02-01                    NaN                     NaN                NaN  …                      NaN                       NaN                 NaN
1913-03-01                    NaN                     NaN                NaN  …                      NaN                       NaN                 NaN
1913-04-01                    NaN                     NaN                NaN  …                      NaN                       NaN                 NaN
1913-05-01                    NaN                     NaN                NaN  …                      NaN                       NaN                 NaN

[5 rows x 62 columns]
```

We also have the configuration parameters available to us via the context
variables:

```python
parameters = context.params

parameters
`
And you'll see a dictionary of parameters:
`
{‘fresh_indicators’: False,



	‘seasonal_adjustments’: [‘ActivityLicensesPhilly’,
	‘BizLicensesPhilly’,
‘BuildingPermitsPhilly’,
‘CPIPhillyMSA’,
‘ContinuedClaimsPA’,
‘WeeklyEconomicIndex’,
‘DeedTransfersPhilly’,
‘InitialClaimsPA’,
‘UncertaintyIndex’,
‘UnemploymentPhilly’],





‘min_feature_year’: 1996,
‘max_fit_date’: ‘2021-06-30’,
‘grangers_maxlag’: 6,
‘grangers_max_date’: ‘2019-12-31’,
‘plan_start_year’: 2022,
‘cbo_forecast_date’: ‘latest’}




```

We can also launch a [Jupyter Notebook](https://jupyter-notebook.readthedocs.io/en/stable/) with the kedro command. From
the command line, run:

`
kedro jupyter notebook
`

If instead you want to use [Jupyter Lab](https://jupyterlab.readthedocs.io/en/latest/)
(the successor to Jupyter Notebook), you can use the following command:

`
kedro jupyter lab
`

These commands will launch a new browser window and you can create a new notebook
file that will have the same global variables (context, session and catalog)
automatically initialized for you.

 # Overview

This section will describe how to run the various steps of the analysis code.
It assumes you have already installed the code by following the
[installation instructions](../install.md).
It also assumes that you are already familiar with the basics of the code
structure and want to get started using the code immediately. If that’s not
the case, please read the [analysis deep dive section](../structure/intro.md) first.

If you’re getting started on the analysis for a new Five Year Plan,
you’ll want to first read the instructions for performing the [annual updates](./updates.md).

First, run the [data processing pipeline](../structure/steps/1-processing.md):

`
poetry run fyp-analysis-run --pipeline dp
`

Then, prepare for the forecast stage by running the
[forecast prep pipeline](../structure/steps/2-forecast-prep.md):

`
poetry run fyp-analysis-run --pipeline fp
`

Then, launch an interactive environment for the [exploratory modeling step](../structure/steps/3-exploratory.md):

`
poetry run kedro jupyter lab
`

See the [documentation](./interactive.md) for working interactively for more details.

Finally, you can produce the final forecasts by running the [forecast pipeline](../structure/steps/4-forecast.md).

`
poetry run fyp-analysis-run --pipeline forecast
`

The final forecasts are summarized in the following file: data/07_reporting/revenue_summary.xlsx.

 # Updating Data Sources

This section describes how to update the necessary data files each year
in order to run a fresh analysis.

Steps

1. Get the latest annual supplemental report

Get the most recent Supplemental Report of Revenues and Obligations. It should be available either on the [Finance Department’s website](https://www.phila.gov/departments/office-of-the-director-of-finance/financial-reports/#/) or you can ask the Audit Division for it. Place it in references/supplementals/.

2. Update annual revenue file

Using the latest Supplemental report, ddd the latest fiscal year revenue totals to “Annual.xlsx” in /data/01_raw/historical/revenues/.

3. Pull the latest quarterly collection numbers

The City releases monthly reports on collections on the [Revenue Department’s website](https://www.phila.gov/departments/department-of-revenue/reports/). The analysis code needs the latest collection numbers for the major taxes. These can be pulled by running:

`
poetry run fyp-analysis-update
`

4. Update quarterly revenue file

The [Quarterly.xlsx](https://github.com/PhiladelphiaController/five-year-plan-analysis/blob/main/data/01_raw/historical/revenues/Quarterly.xlsx) file in the data/01_raw/historical/revenues/ folder holds the
quarterly tax revenues since 1996. The data file has a separate sheet
for the following taxes:

	Wage & Earnings (Current Year Only)

	Sales

	BIRT

	Realty Transfer

	Net Profits (Current Year Only)

	Parking

	Amusement

	!!! warning
	Note that the Wage & Earnings and Net Profits taxes are for the
current year only (not total collections).

	!!! note
	The sheet entitled Latest Collections Data contains the actual collections data for each quarter from monthly collections reports from the Revenue Department. If you succeeded in running the last step, it should be updated to show the latest numbers.

Each sheet includes detailed instructions about how to update the
data. In general, the steps involved are:

1. For each sheet, use the Latest Collections Data totals to update actual quarterly collections.
1. Use the latest annual [Supplemental Report of Revenues and Obligations](https://www.phila.gov/departments/office-of-the-director-of-finance/financial-reports/#/supplemental-report-of-revenues-and-obligations) to
get the audited annual total for each tax. The historical Supplemental reports available in the references/supplementals/ folder.
1. Given the annual total and quarterly values, update each sheet so the accrual value is automatically determined.
2. For the current fiscal year, the Q4 collections values are still projected. Use the Budget Office’s projection for the annual total and the fiscal-year-to-date collections totals to impute a Q4 collections value.

5. Update actual tax rates

Add the actual tax rates for the current fiscal year for each
tax file in the /data/01_raw/historical/rates folder. The tax rates for the historical wage & BIRT rates can be obtained from the model spreadsheets that the Budget Office sends over.

	!!! note
	These folders should not contain any projected tax rates.
Those go in the file specifiying the plan details (see step #8).

6. Update BIRT splits

Copy over latest actual fiscal year data from the BIRT model spreadsheet (from Budget Office) to the data/01_raw/historical/BIRT-splits.xlsx file. This specifies how much of BIRT comes
from the net income portion.

7. Pull the latest CBO forecast.

The latest CBO forecast is used to help constrain future forecasts. To get the latest forecast, see the “Historical Data and Economic Projections” section at https://www.cbo.gov/data/budget-economic-data.

Get the quarterly CSV forecast file and place it in the data/01_raw/cbo/ and be sure to follow the same naming convention to denote which month/year the forecast is from.

8. Create a new file with Plan Details

Details about the five-year projected tax revenues and rates are stored
in YAML files in the data/01_raw/plans/ folder ([link](https://github.com/PhiladelphiaController/five-year-plan-analysis/tree/main/data/01_raw/plans)).

Creating these YAML files for each new Plan is one of the main tasks that must be completed
before the analysis begins. A separate file should be created for the original proposal
and for the adopted version of the Plan.

This section describes how to create these files. The majority of information comes from the
revenue spreadsheet models sent over by the Budget Office during each Plan analysis.

Revenues

For all taxes except for Sales, revenue totals can be obtained from the Supporting
Revenue Schedule spreadsheet, typically named e.g., FYXX-YY Revenues - Taxes.xlsx
that is sent over from Budget. This spreadsheet includes revenue totals for each
year of the Plan.

![Example Revenue Schedule for Five Year Plan](/assets/img/revenue-schedule-example.png)

	!!! warning
	The “Wage” line in the YAML file refers to the Current Year Wage & Earnings line.
The “NPT” line in the YAML file refers to the Current Year Net Profits tax.

For the Sales tax, you must pull the total City & School District revenue totals from
the Sales Tax revenue spreadsheet sent over by Budget. The file is typically named
FYXX-YY Sales Tax Model.xlsx. See the highlighted line (a) below.

![Example Sales Tax Schedule for Five Year Plan](/assets/img/sales-tax-example.png)

Rates

The projected tax rates in the Plan can be obtained from the large Five Year
Plan proposal document. Typically, any changes to tax rates are emphasized in the Plan documents.

Generally, the Wage & Earnings and BIRT rates are the tax rates that change
over the life of the Plan. You can obtain these rates from the revenue spreadsheets
sent over by Budget.

In the Wage Tax model (typically named FYXX-YY Wage Tax Model.xlsx):

![Wage Tax Rates for Five Year Plan](/assets/img/wage-rates-example.png)

In the BIRT model (typically named FYXX-YY BPT Model.xlsx for “Business Privilege Tax”):

![BIRT Rates for Five Year Plan](/assets/img/birt-rates-example.png)

	!!! note
	The Net Profits tax uses the same tax rates (resident and non-resident) as the
Wage & Earnings taxes.

Resident Fractions

The Budget Office assumption for the resident/non-resident splits for the Wage & Earnings
and Net Profits taxes can be found in the Wage Tax spreadsheet. These are assumed
to be constant over the 5 years of the Plan.

![Resident/Non-residents Splits for Wage & NPT](/assets/img/resident-splits.png)

Net Income Fraction

The Budget Office assumption for the amount of BIRT revenue from the net income
portion can be found in the BIRT spreadsheet. The fraction changes over the life of
the Plan.

![Net Income Fraction for BIRT](/assets/img/net-income-fraction-example.png)

9. Update the economic indicators

The economic indicators are stored locally in the data/01_raw/indicators/ folder. The
data is automatically downloaded as part of the data processing pipeline
in the analysis.
To get a fresh copy of the indicators downloaded locally, you
can set the fresh_indicators parameter to True and run the data processing
pipeline using:

`
poetry run fyp-analysis-run --pipeline dp --params fresh_indicators:True
`

This will download and store the latest version of all indicators.

 nav.xhtml

 Table of Contents

 		
 <no title>

_static/plus.png

_static/file.png

_static/minus.png

